Advances in Graph Neural Networks

Advances in Graph Neural Networks
Author :
Publisher : Springer Nature
Total Pages : 207
Release :
ISBN-10 : 9783031161742
ISBN-13 : 3031161742
Rating : 4/5 (742 Downloads)

Book Synopsis Advances in Graph Neural Networks by : Chuan Shi

Download or read book Advances in Graph Neural Networks written by Chuan Shi and published by Springer Nature. This book was released on 2022-11-16 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to the foundations and frontiers of graph neural networks. In addition, the book introduces the basic concepts and definitions in graph representation learning and discusses the development of advanced graph representation learning methods with a focus on graph neural networks. The book providers researchers and practitioners with an understanding of the fundamental issues as well as a launch point for discussing the latest trends in the science. The authors emphasize several frontier aspects of graph neural networks and utilize graph data to describe pairwise relations for real-world data from many different domains, including social science, chemistry, and biology. Several frontiers of graph neural networks are introduced, which enable readers to acquire the needed techniques of advances in graph neural networks via theoretical models and real-world applications.


Advances in Graph Neural Networks Related Books

Advances in Graph Neural Networks
Language: en
Pages: 207
Authors: Chuan Shi
Categories: Mathematics
Type: BOOK - Published: 2022-11-16 - Publisher: Springer Nature

DOWNLOAD EBOOK

This book provides a comprehensive introduction to the foundations and frontiers of graph neural networks. In addition, the book introduces the basic concepts a
Graph Representation Learning
Language: en
Pages: 141
Authors: William L. William L. Hamilton
Categories: Computers
Type: BOOK - Published: 2022-06-01 - Publisher: Springer Nature

DOWNLOAD EBOOK

Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational induct
Graph Neural Networks: Foundations, Frontiers, and Applications
Language: en
Pages: 701
Authors: Lingfei Wu
Categories: Computers
Type: BOOK - Published: 2022-01-03 - Publisher: Springer Nature

DOWNLOAD EBOOK

Deep Learning models are at the core of artificial intelligence research today. It is well known that deep learning techniques are disruptive for Euclidean data
Introduction to Graph Neural Networks
Language: en
Pages: 109
Authors: Zhiyuan Zhiyuan Liu
Categories: Computers
Type: BOOK - Published: 2022-05-31 - Publisher: Springer Nature

DOWNLOAD EBOOK

Graphs are useful data structures in complex real-life applications such as modeling physical systems, learning molecular fingerprints, controlling traffic netw
Deep Learning and the Game of Go
Language: en
Pages: 611
Authors: Kevin Ferguson
Categories: Computers
Type: BOOK - Published: 2019-01-06 - Publisher: Simon and Schuster

DOWNLOAD EBOOK

Summary Deep Learning and the Game of Go teaches you how to apply the power of deep learning to complex reasoning tasks by building a Go-playing AI. After expos