Understanding Machine Learning

Understanding Machine Learning
Author :
Publisher : Cambridge University Press
Total Pages : 415
Release :
ISBN-10 : 9781107057135
ISBN-13 : 1107057132
Rating : 4/5 (132 Downloads)

Book Synopsis Understanding Machine Learning by : Shai Shalev-Shwartz

Download or read book Understanding Machine Learning written by Shai Shalev-Shwartz and published by Cambridge University Press. This book was released on 2014-05-19 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.


Understanding Machine Learning Related Books

Understanding Machine Learning
Language: en
Pages: 415
Authors: Shai Shalev-Shwartz
Categories: Computers
Type: BOOK - Published: 2014-05-19 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying thei
Algorithmic Learning Theory
Language: en
Pages: 415
Authors: Marcus Hutter
Categories: Computers
Type: BOOK - Published: 2007-09-17 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 18th International Conference on Algorithmic Learning Theory, ALT 2007, held in Sendai, Japan, October 1-4
Boosting
Language: en
Pages: 544
Authors: Robert E. Schapire
Categories: Computers
Type: BOOK - Published: 2014-01-10 - Publisher: MIT Press

DOWNLOAD EBOOK

An accessible introduction and essential reference for an approach to machine learning that creates highly accurate prediction rules by combining many weak and
Algorithmic Learning in a Random World
Language: en
Pages: 344
Authors: Vladimir Vovk
Categories: Computers
Type: BOOK - Published: 2005-03-22 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

Algorithmic Learning in a Random World describes recent theoretical and experimental developments in building computable approximations to Kolmogorov's algorith
Algorithmic Learning Theory
Language: en
Pages: 405
Authors: José L. Balcázar
Categories: Computers
Type: BOOK - Published: 2006-10-05 - Publisher: Springer

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 17th International Conference on Algorithmic Learning Theory, ALT 2006, held in Barcelona, Spain in Octobe