An Introduction to Classical Real Analysis

An Introduction to Classical Real Analysis
Author :
Publisher : American Mathematical Soc.
Total Pages : 594
Release :
ISBN-10 : 9781470425449
ISBN-13 : 1470425440
Rating : 4/5 (440 Downloads)

Book Synopsis An Introduction to Classical Real Analysis by : Karl R. Stromberg

Download or read book An Introduction to Classical Real Analysis written by Karl R. Stromberg and published by American Mathematical Soc.. This book was released on 2015-10-10 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic book is a text for a standard introductory course in real analysis, covering sequences and series, limits and continuity, differentiation, elementary transcendental functions, integration, infinite series and products, and trigonometric series. The author has scrupulously avoided any presumption at all that the reader has any knowledge of mathematical concepts until they are formally presented in the book. One significant way in which this book differs from other texts at this level is that the integral which is first mentioned is the Lebesgue integral on the real line. There are at least three good reasons for doing this. First, this approach is no more difficult to understand than is the traditional theory of the Riemann integral. Second, the readers will profit from acquiring a thorough understanding of Lebesgue integration on Euclidean spaces before they enter into a study of abstract measure theory. Third, this is the integral that is most useful to current applied mathematicians and theoretical scientists, and is essential for any serious work with trigonometric series. The exercise sets are a particularly attractive feature of this book. A great many of the exercises are projects of many parts which, when completed in the order given, lead the student by easy stages to important and interesting results. Many of the exercises are supplied with copious hints. This new printing contains a large number of corrections and a short author biography as well as a list of selected publications of the author. This classic book is a text for a standard introductory course in real analysis, covering sequences and series, limits and continuity, differentiation, elementary transcendental functions, integration, infinite series and products, and trigonometric series. The author has scrupulously avoided any presumption at all that the reader has any knowledge of mathematical concepts until they are formally presented in the book. - See more at: http://bookstore.ams.org/CHEL-376-H/#sthash.wHQ1vpdk.dpuf This classic book is a text for a standard introductory course in real analysis, covering sequences and series, limits and continuity, differentiation, elementary transcendental functions, integration, infinite series and products, and trigonometric series. The author has scrupulously avoided any presumption at all that the reader has any knowledge of mathematical concepts until they are formally presented in the book. One significant way in which this book differs from other texts at this level is that the integral which is first mentioned is the Lebesgue integral on the real line. There are at least three good reasons for doing this. First, this approach is no more difficult to understand than is the traditional theory of the Riemann integral. Second, the readers will profit from acquiring a thorough understanding of Lebesgue integration on Euclidean spaces before they enter into a study of abstract measure theory. Third, this is the integral that is most useful to current applied mathematicians and theoretical scientists, and is essential for any serious work with trigonometric series. The exercise sets are a particularly attractive feature of this book. A great many of the exercises are projects of many parts which, when completed in the order given, lead the student by easy stages to important and interesting results. Many of the exercises are supplied with copious hints. This new printing contains a large number of corrections and a short author biography as well as a list of selected publications of the author. This classic book is a text for a standard introductory course in real analysis, covering sequences and series, limits and continuity, differentiation, elementary transcendental functions, integration, infinite series and products, and trigonometric series. The author has scrupulously avoided any presumption at all that the reader has any knowledge of mathematical concepts until they are formally presented in the book. - See more at: http://bookstore.ams.org/CHEL-376-H/#sthash.wHQ1vpdk.dpuf


An Introduction to Classical Real Analysis Related Books

An Introduction to Classical Real Analysis
Language: en
Pages: 594
Authors: Karl R. Stromberg
Categories: Mathematics
Type: BOOK - Published: 2015-10-10 - Publisher: American Mathematical Soc.

DOWNLOAD EBOOK

This classic book is a text for a standard introductory course in real analysis, covering sequences and series, limits and continuity, differentiation, elementa
Invitation to Classical Analysis
Language: en
Pages: 416
Authors: Peter Duren
Categories: Education
Type: BOOK - Published: 2012 - Publisher: American Mathematical Soc.

DOWNLOAD EBOOK

This book gives a rigorous treatment of selected topics in classical analysis, with many applications and examples. The exposition is at the undergraduate level
Elementary Classical Analysis
Language: en
Pages: 760
Authors: Jerrold E. Marsden
Categories: Mathematics
Type: BOOK - Published: 1993-03-15 - Publisher: Macmillan

DOWNLOAD EBOOK

Designed for courses in advanced calculus and introductory real analysis, Elementary Classical Analysis strikes a careful balance between pure and applied mathe
Real Analysis and Applications
Language: en
Pages: 523
Authors: Kenneth R. Davidson
Categories: Mathematics
Type: BOOK - Published: 2009-10-13 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

This new approach to real analysis stresses the use of the subject with respect to applications, i.e., how the principles and theory of real analysis can be app
An Introduction to Mathematical Analysis
Language: en
Pages: 548
Authors: Frank Loxley Griffin
Categories: Mathematical analysis
Type: BOOK - Published: 1922 - Publisher:

DOWNLOAD EBOOK