AI for Data Science

AI for Data Science
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 1634624092
ISBN-13 : 9781634624091
Rating : 4/5 (091 Downloads)

Book Synopsis AI for Data Science by : Zacharias Voulgaris

Download or read book AI for Data Science written by Zacharias Voulgaris and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the approaches and principles of Artificial Intelligence (AI) algorithms, and apply them to Data Science projects with Python and Julia code. Aspiring and practicing Data Science and AI professionals, along with Python and Julia programmers, will practice numerous AI algorithms and develop a more holistic understanding of the field of AI, and will learn when to use each framework to tackle projects in our increasingly complex world. The first two chapters introduce the field, with Chapter 1 surveying Deep Learning models and Chapter 2 providing an overview of algorithms beyond Deep Learning, including Optimization, Fuzzy Logic, and Artificial Creativity. The next chapters focus on AI frameworks; they contain data and Python and Julia code in a provided Docker, so you can practice. Chapter 3 covers Apache's MXNet, Chapter 4 covers TensorFlow, and Chapter 5 investigates Keras. After covering these Deep Learning frameworks, we explore a series of optimization frameworks, with Chapter 6 covering Particle Swarm Optimization (PSO), Chapter 7 on Genetic Algorithms (GAs), and Chapter 8 discussing Simulated Annealing (SA). Chapter 9 begins our exploration of advanced AI methods, by covering Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). Chapter 10 discusses optimization ensembles and how they can add value to the Data Science pipeline. Chapter 11 contains several alternative AI frameworks including Extreme Learning Machines (ELMs), Capsule Networks (CapsNets), and Fuzzy Inference Systems (FIS). Chapter 12 covers other considerations complementary to the AI topics covered, including Big Data concepts, Data Science specialization areas, and useful data resources to experiment on. A comprehensive glossary is included, as well as a series of appendices covering Transfer Learning, Reinforcement Learning, Autoencoder Systems, and Generative Adversarial Networks. There is also an appendix on the business aspects of AI in data science projects, and an appendix on how to use the Docker image to access the book's data and code. The field of AI is vast, and can be overwhelming for the newcomer to approach. This book will arm you with a solid understanding of the field, plus inspire you to explore further.


AI for Data Science Related Books

AI for Data Science
Language: en
Pages: 0
Authors: Zacharias Voulgaris
Categories: Algorithms
Type: BOOK - Published: 2018 - Publisher:

DOWNLOAD EBOOK

Master the approaches and principles of Artificial Intelligence (AI) algorithms, and apply them to Data Science projects with Python and Julia code. Aspiring an
Artificial Intelligence and Data Science in Environmental Sensing
Language: en
Pages: 326
Authors: Mohsen Asadnia
Categories: Computers
Type: BOOK - Published: 2022-02-09 - Publisher: Academic Press

DOWNLOAD EBOOK

Artificial Intelligence and Data Science in Environmental Sensing provides state-of-the-art information on the inexpensive mass-produced sensors that are used a
Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry
Language: en
Pages: 653
Authors: Chkoniya, Valentina
Categories: Computers
Type: BOOK - Published: 2021-06-25 - Publisher: IGI Global

DOWNLOAD EBOOK

The contemporary world lives on the data produced at an unprecedented speed through social networks and the internet of things (IoT). Data has been called the n
Analytics, Data Science, and Artificial Intelligence
Language: en
Pages: 832
Authors: Ramesh Sharda
Categories: Business intelligence
Type: BOOK - Published: 2020-03-06 - Publisher:

DOWNLOAD EBOOK

For courses in decision support systems, computerized decision-making tools, and management support systems. Market-leading guide to modern analytics, for bette
Data Science and Machine Learning
Language: en
Pages: 538
Authors: Dirk P. Kroese
Categories: Business & Economics
Type: BOOK - Published: 2019-11-20 - Publisher: CRC Press

DOWNLOAD EBOOK

Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked