Deep Learning with JAX

Deep Learning with JAX
Author :
Publisher : Simon and Schuster
Total Pages : 406
Release :
ISBN-10 : 9781633438880
ISBN-13 : 1633438880
Rating : 4/5 (880 Downloads)

Book Synopsis Deep Learning with JAX by : Grigory Sapunov

Download or read book Deep Learning with JAX written by Grigory Sapunov and published by Simon and Schuster. This book was released on 2024-10-29 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accelerate deep learning and other number-intensive tasks with JAX, Google’s awesome high-performance numerical computing library. The JAX numerical computing library tackles the core performance challenges at the heart of deep learning and other scientific computing tasks. By combining Google’s Accelerated Linear Algebra platform (XLA) with a hyper-optimized version of NumPy and a variety of other high-performance features, JAX delivers a huge performance boost in low-level computations and transformations. In Deep Learning with JAX you will learn how to: • Use JAX for numerical calculations • Build differentiable models with JAX primitives • Run distributed and parallelized computations with JAX • Use high-level neural network libraries such as Flax • Leverage libraries and modules from the JAX ecosystem Deep Learning with JAX is a hands-on guide to using JAX for deep learning and other mathematically-intensive applications. Google Developer Expert Grigory Sapunov steadily builds your understanding of JAX’s concepts. The engaging examples introduce the fundamental concepts on which JAX relies and then show you how to apply them to real-world tasks. You’ll learn how to use JAX’s ecosystem of high-level libraries and modules, and also how to combine TensorFlow and PyTorch with JAX for data loading and deployment. Purchase of the print book includes a free eBook in PDF and ePub formats from Manning Publications. About the technology Google’s JAX offers a fresh vision for deep learning. This powerful library gives you fine control over low level processes like gradient calculations, delivering fast and efficient model training and inference, especially on large datasets. JAX has transformed how research scientists approach deep learning. Now boasting a robust ecosystem of tools and libraries, JAX makes evolutionary computations, federated learning, and other performance-sensitive tasks approachable for all types of applications. About the book Deep Learning with JAX teaches you to build effective neural networks with JAX. In this example-rich book, you’ll discover how JAX’s unique features help you tackle important deep learning performance challenges, like distributing computations across a cluster of TPUs. You’ll put the library into action as you create an image classification tool, an image filter application, and other realistic projects. The nicely-annotated code listings demonstrate how JAX’s functional programming mindset improves composability and parallelization. What's inside • Use JAX for numerical calculations • Build differentiable models with JAX primitives • Run distributed and parallelized computations with JAX • Use high-level neural network libraries such as Flax About the reader For intermediate Python programmers who are familiar with deep learning. About the author Grigory Sapunov holds a Ph.D. in artificial intelligence and is a Google Developer Expert in Machine Learning. The technical editor on this book was Nicholas McGreivy. Table of Contents Part 1 1 When and why to use JAX 2 Your first program in JAX Part 2 3 Working with arrays 4 Calculating gradients 5 Compiling your code 6 Vectorizing your code 7 Parallelizing your computations 8 Using tensor sharding 9 Random numbers in JAX 10 Working with pytrees Part 3 11 Higher-level neural network libraries 12 Other members of the JAX ecosystem A Installing JAX B Using Google Colab C Using Google Cloud TPUs D Experimental parallelization


Deep Learning with JAX Related Books

Deep Learning with JAX
Language: en
Pages: 406
Authors: Grigory Sapunov
Categories: Computers
Type: BOOK - Published: 2024-10-29 - Publisher: Simon and Schuster

DOWNLOAD EBOOK

Accelerate deep learning and other number-intensive tasks with JAX, Google’s awesome high-performance numerical computing library. The JAX numerical computing
Deep Learning with JAX
Language: en
Pages: 406
Authors: Grigory Sapunov
Categories: Computers
Type: BOOK - Published: 2024-12-03 - Publisher: Simon and Schuster

DOWNLOAD EBOOK

Accelerate deep learning and other number-intensive tasks with JAX, Google’s awesome high-performance numerical computing library. The JAX numerical computing
Google JAX Essentials
Language: en
Pages: 161
Authors: Mei Wong
Categories: Computers
Type: BOOK - Published: 2023-05-31 - Publisher: GitforGits

DOWNLOAD EBOOK

"Google JAX Essentials" is a comprehensive guide designed for machine learning and deep learning professionals aiming to leverage the power and capabilities of
Dive Into Deep Learning
Language: en
Pages: 297
Authors: Joanne Quinn
Categories: Education
Type: BOOK - Published: 2019-07-15 - Publisher: Corwin Press

DOWNLOAD EBOOK

The leading experts in system change and learning, with their school-based partners around the world, have created this essential companion to their runaway bes
Deep Reinforcement Learning Hands-On
Language: en
Pages: 547
Authors: Maxim Lapan
Categories: Computers
Type: BOOK - Published: 2018-06-21 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

This practical guide will teach you how deep learning (DL) can be used to solve complex real-world problems. Key Features Explore deep reinforcement learning (R