Evolutionary Machine Learning Techniques

Evolutionary Machine Learning Techniques
Author :
Publisher : Springer Nature
Total Pages : 287
Release :
ISBN-10 : 9789813299900
ISBN-13 : 9813299908
Rating : 4/5 (908 Downloads)

Book Synopsis Evolutionary Machine Learning Techniques by : Seyedali Mirjalili

Download or read book Evolutionary Machine Learning Techniques written by Seyedali Mirjalili and published by Springer Nature. This book was released on 2019-11-11 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an in-depth analysis of the current evolutionary machine learning techniques. Discussing the most highly regarded methods for classification, clustering, regression, and prediction, it includes techniques such as support vector machines, extreme learning machines, evolutionary feature selection, artificial neural networks including feed-forward neural networks, multi-layer perceptron, probabilistic neural networks, self-optimizing neural networks, radial basis function networks, recurrent neural networks, spiking neural networks, neuro-fuzzy networks, modular neural networks, physical neural networks, and deep neural networks. The book provides essential definitions, literature reviews, and the training algorithms for machine learning using classical and modern nature-inspired techniques. It also investigates the pros and cons of classical training algorithms. It features a range of proven and recent nature-inspired algorithms used to train different types of artificial neural networks, including genetic algorithm, ant colony optimization, particle swarm optimization, grey wolf optimizer, whale optimization algorithm, ant lion optimizer, moth flame algorithm, dragonfly algorithm, salp swarm algorithm, multi-verse optimizer, and sine cosine algorithm. The book also covers applications of the improved artificial neural networks to solve classification, clustering, prediction and regression problems in diverse fields.


Evolutionary Machine Learning Techniques Related Books

Evolutionary Machine Learning Techniques
Language: en
Pages: 287
Authors: Seyedali Mirjalili
Categories: Technology & Engineering
Type: BOOK - Published: 2019-11-11 - Publisher: Springer Nature

DOWNLOAD EBOOK

This book provides an in-depth analysis of the current evolutionary machine learning techniques. Discussing the most highly regarded methods for classification,
Evolutionary Approach to Machine Learning and Deep Neural Networks
Language: en
Pages: 254
Authors: Hitoshi Iba
Categories: Computers
Type: BOOK - Published: 2018-06-15 - Publisher: Springer

DOWNLOAD EBOOK

This book provides theoretical and practical knowledge about a methodology for evolutionary algorithm-based search strategy with the integration of several mach
Evolutionary Learning Algorithms for Neural Adaptive Control
Language: en
Pages: 214
Authors: Dimitris C. Dracopoulos
Categories: Computers
Type: BOOK - Published: 2013-12-21 - Publisher: Springer

DOWNLOAD EBOOK

Evolutionary Learning Algorithms for Neural Adaptive Control is an advanced textbook, which investigates how neural networks and genetic algorithms can be appli
Data-Driven Evolutionary Optimization
Language: en
Pages: 393
Authors: Yaochu Jin
Categories: Computers
Type: BOOK - Published: 2021-06-28 - Publisher: Springer Nature

DOWNLOAD EBOOK

Intended for researchers and practitioners alike, this book covers carefully selected yet broad topics in optimization, machine learning, and metaheuristics. Wr
Data Mining and Knowledge Discovery with Evolutionary Algorithms
Language: en
Pages: 272
Authors: Alex A. Freitas
Categories: Computers
Type: BOOK - Published: 2013-11-11 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

This book integrates two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increasingly popular in the las