Introduction to Statistical Machine Learning

Introduction to Statistical Machine Learning
Author :
Publisher : Morgan Kaufmann
Total Pages : 535
Release :
ISBN-10 : 9780128023501
ISBN-13 : 0128023503
Rating : 4/5 (503 Downloads)

Book Synopsis Introduction to Statistical Machine Learning by : Masashi Sugiyama

Download or read book Introduction to Statistical Machine Learning written by Masashi Sugiyama and published by Morgan Kaufmann. This book was released on 2015-10-31 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning allows computers to learn and discern patterns without actually being programmed. When Statistical techniques and machine learning are combined together they are a powerful tool for analysing various kinds of data in many computer science/engineering areas including, image processing, speech processing, natural language processing, robot control, as well as in fundamental sciences such as biology, medicine, astronomy, physics, and materials. Introduction to Statistical Machine Learning provides a general introduction to machine learning that covers a wide range of topics concisely and will help you bridge the gap between theory and practice. Part I discusses the fundamental concepts of statistics and probability that are used in describing machine learning algorithms. Part II and Part III explain the two major approaches of machine learning techniques; generative methods and discriminative methods. While Part III provides an in-depth look at advanced topics that play essential roles in making machine learning algorithms more useful in practice. The accompanying MATLAB/Octave programs provide you with the necessary practical skills needed to accomplish a wide range of data analysis tasks. - Provides the necessary background material to understand machine learning such as statistics, probability, linear algebra, and calculus - Complete coverage of the generative approach to statistical pattern recognition and the discriminative approach to statistical machine learning - Includes MATLAB/Octave programs so that readers can test the algorithms numerically and acquire both mathematical and practical skills in a wide range of data analysis tasks - Discusses a wide range of applications in machine learning and statistics and provides examples drawn from image processing, speech processing, natural language processing, robot control, as well as biology, medicine, astronomy, physics, and materials


Introduction to Statistical Machine Learning Related Books

An Introduction to Statistical Learning
Language: en
Pages: 617
Authors: Gareth James
Categories: Mathematics
Type: BOOK - Published: 2023-08-01 - Publisher: Springer Nature

DOWNLOAD EBOOK

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast
Introduction to Statistical Machine Learning
Language: en
Pages: 535
Authors: Masashi Sugiyama
Categories: Mathematics
Type: BOOK - Published: 2015-10-31 - Publisher: Morgan Kaufmann

DOWNLOAD EBOOK

Machine learning allows computers to learn and discern patterns without actually being programmed. When Statistical techniques and machine learning are combined
Statistical Machine Learning for Engineering with Applications
Language: en
Pages: 393
Authors: Jürgen Franke
Categories:
Type: BOOK - Published: - Publisher: Springer Nature

DOWNLOAD EBOOK

An Introduction to Statistical Learning
Language: en
Pages: 434
Authors: Gareth James
Categories: Mathematics
Type: BOOK - Published: 2013-06-24 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast
Introduction to Semi-Supervised Learning
Language: en
Pages: 122
Authors: Xiaojin Zhu
Categories: Computers
Type: BOOK - Published: 2022-05-31 - Publisher: Springer Nature

DOWNLOAD EBOOK

Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both label