The Ricci Flow: Techniques and Applications

The Ricci Flow: Techniques and Applications
Author :
Publisher : American Mathematical Soc.
Total Pages : 542
Release :
ISBN-10 : 9780821846612
ISBN-13 : 0821846612
Rating : 4/5 (612 Downloads)

Book Synopsis The Ricci Flow: Techniques and Applications by : Bennett Chow

Download or read book The Ricci Flow: Techniques and Applications written by Bennett Chow and published by American Mathematical Soc.. This book was released on 2010-04-21 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Ricci flow uses methods from analysis to study the geometry and topology of manifolds. With the third part of their volume on techniques and applications of the theory, the authors give a presentation of Hamilton's Ricci flow for graduate students and mathematicians interested in working in the subject, with an emphasis on the geometric and analytic aspects. The topics include Perelman's entropy functional, point picking methods, aspects of Perelman's theory of $\kappa$-solutions including the $\kappa$-gap theorem, compactness theorem and derivative estimates, Perelman's pseudolocality theorem, and aspects of the heat equation with respect to static and evolving metrics related to Ricci flow. In the appendices, we review metric and Riemannian geometry including the space of points at infinity and Sharafutdinov retraction for complete noncompact manifolds with nonnegative sectional curvature. As in the previous volumes, the authors have endeavored, as much as possible, to make the chapters independent of each other. The book makes advanced material accessible to graduate students and nonexperts. It includes a rigorous introduction to some of Perelman's work and explains some technical aspects of Ricci flow useful for singularity analysis. The authors give the appropriate references so that the reader may further pursue the statements and proofs of the various results.


The Ricci Flow: Techniques and Applications Related Books

The Ricci Flow
Language: en
Pages: 562
Authors: Bennett Chow
Categories: Global differential geometry
Type: BOOK - Published: 2007 - Publisher: American Mathematical Society(RI)

DOWNLOAD EBOOK

Geometric analysis has become one of the most important tools in geometry and topology. In their books on the Ricci flow, the authors reveal the depth and bread
The Ricci Flow: An Introduction
Language: en
Pages: 342
Authors: Bennett Chow
Categories: Mathematics
Type: BOOK - Published: 2004 - Publisher: American Mathematical Soc.

DOWNLOAD EBOOK

The Ricci flow is a powerful technique that integrates geometry, topology, and analysis. Intuitively, the idea is to set up a PDE that evolves a metric accordin
Hamilton’s Ricci Flow
Language: en
Pages: 648
Authors: Bennett Chow
Categories: Mathematics
Type: BOOK - Published: 2023-07-13 - Publisher: American Mathematical Society, Science Press

DOWNLOAD EBOOK

Ricci flow is a powerful analytic method for studying the geometry and topology of manifolds. This book is an introduction to Ricci flow for graduate students a
The Ricci Flow
Language: en
Pages: 0
Authors: Bennett Chow
Categories: Global differential geometry
Type: BOOK - Published: 2010 - Publisher:

DOWNLOAD EBOOK

The Ricci flow uses methods from analysis to study the geometry and topology of manifolds. With the third part of their volume on techniques and applications of
Ricci Flow and the Poincare Conjecture
Language: en
Pages: 586
Authors: John W. Morgan
Categories: Mathematics
Type: BOOK - Published: 2007 - Publisher: American Mathematical Soc.

DOWNLOAD EBOOK

For over 100 years the Poincare Conjecture, which proposes a topological characterization of the 3-sphere, has been the central question in topology. Since its