Boosting

Boosting
Author :
Publisher : MIT Press
Total Pages : 544
Release :
ISBN-10 : 9780262526036
ISBN-13 : 0262526034
Rating : 4/5 (034 Downloads)

Book Synopsis Boosting by : Robert E. Schapire

Download or read book Boosting written by Robert E. Schapire and published by MIT Press. This book was released on 2014-01-10 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction and essential reference for an approach to machine learning that creates highly accurate prediction rules by combining many weak and inaccurate ones. Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate “rules of thumb.” A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical. This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well. The book begins with a general introduction to machine learning algorithms and their analysis; then explores the core theory of boosting, especially its ability to generalize; examines some of the myriad other theoretical viewpoints that help to explain and understand boosting; provides practical extensions of boosting for more complex learning problems; and finally presents a number of advanced theoretical topics. Numerous applications and practical illustrations are offered throughout.


Boosting Related Books

Boosting
Language: en
Pages: 544
Authors: Robert E. Schapire
Categories: Computers
Type: BOOK - Published: 2014-01-10 - Publisher: MIT Press

DOWNLOAD EBOOK

An accessible introduction and essential reference for an approach to machine learning that creates highly accurate prediction rules by combining many weak and
Computational Learning Theory and Natural Learning Systems: Intersections between theory and experiment
Language: en
Pages: 449
Authors: Stephen José Hanson
Categories: Computers
Type: BOOK - Published: 1994 - Publisher: Mit Press

DOWNLOAD EBOOK

Annotation These original contributions converge on an exciting and fruitful intersection of three historically distinct areas of learning research: computation
Understanding Machine Learning
Language: en
Pages: 415
Authors: Shai Shalev-Shwartz
Categories: Computers
Type: BOOK - Published: 2014-05-19 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learn
Learning Theory
Language: en
Pages:
Authors: Felipe Cucker
Categories: Computers
Type: BOOK - Published: 2007-03-29 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

The goal of learning theory is to approximate a function from sample values. To attain this goal learning theory draws on a variety of diverse subjects, specifi
The Principles of Deep Learning Theory
Language: en
Pages: 473
Authors: Daniel A. Roberts
Categories: Computers
Type: BOOK - Published: 2022-05-26 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

This volume develops an effective theory approach to understanding deep neural networks of practical relevance.