Data Engineering on Azure

Data Engineering on Azure
Author :
Publisher : Simon and Schuster
Total Pages : 334
Release :
ISBN-10 : 9781617298929
ISBN-13 : 1617298921
Rating : 4/5 (921 Downloads)

Book Synopsis Data Engineering on Azure by : Vlad Riscutia

Download or read book Data Engineering on Azure written by Vlad Riscutia and published by Simon and Schuster. This book was released on 2021-08-17 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build a data platform to the industry-leading standards set by Microsoft’s own infrastructure. Summary In Data Engineering on Azure you will learn how to: Pick the right Azure services for different data scenarios Manage data inventory Implement production quality data modeling, analytics, and machine learning workloads Handle data governance Using DevOps to increase reliability Ingesting, storing, and distributing data Apply best practices for compliance and access control Data Engineering on Azure reveals the data management patterns and techniques that support Microsoft’s own massive data infrastructure. Author Vlad Riscutia, a data engineer at Microsoft, teaches you to bring an engineering rigor to your data platform and ensure that your data prototypes function just as well under the pressures of production. You'll implement common data modeling patterns, stand up cloud-native data platforms on Azure, and get to grips with DevOps for both analytics and machine learning. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Build secure, stable data platforms that can scale to loads of any size. When a project moves from the lab into production, you need confidence that it can stand up to real-world challenges. This book teaches you to design and implement cloud-based data infrastructure that you can easily monitor, scale, and modify. About the book In Data Engineering on Azure you’ll learn the skills you need to build and maintain big data platforms in massive enterprises. This invaluable guide includes clear, practical guidance for setting up infrastructure, orchestration, workloads, and governance. As you go, you’ll set up efficient machine learning pipelines, and then master time-saving automation and DevOps solutions. The Azure-based examples are easy to reproduce on other cloud platforms. What's inside Data inventory and data governance Assure data quality, compliance, and distribution Build automated pipelines to increase reliability Ingest, store, and distribute data Production-quality data modeling, analytics, and machine learning About the reader For data engineers familiar with cloud computing and DevOps. About the author Vlad Riscutia is a software architect at Microsoft. Table of Contents 1 Introduction PART 1 INFRASTRUCTURE 2 Storage 3 DevOps 4 Orchestration PART 2 WORKLOADS 5 Processing 6 Analytics 7 Machine learning PART 3 GOVERNANCE 8 Metadata 9 Data quality 10 Compliance 11 Distributing data


Data Engineering on Azure Related Books

Data Engineering on Azure
Language: en
Pages: 334
Authors: Vlad Riscutia
Categories: Computers
Type: BOOK - Published: 2021-08-17 - Publisher: Simon and Schuster

DOWNLOAD EBOOK

Build a data platform to the industry-leading standards set by Microsoft’s own infrastructure. Summary In Data Engineering on Azure you will learn how to: Pic
Data Engineering with Python
Language: en
Pages: 357
Authors: Paul Crickard
Categories: Computers
Type: BOOK - Published: 2020-10-23 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

Build, monitor, and manage real-time data pipelines to create data engineering infrastructure efficiently using open-source Apache projects Key Features Become
Data Engineering with Google Cloud Platform
Language: en
Pages: 440
Authors: Adi Wijaya
Categories: Computers
Type: BOOK - Published: 2022-03-31 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

Build and deploy your own data pipelines on GCP, make key architectural decisions, and gain the confidence to boost your career as a data engineer Key Features
Data-Driven Science and Engineering
Language: en
Pages: 615
Authors: Steven L. Brunton
Categories: Computers
Type: BOOK - Published: 2022-05-05 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Data Pipelines Pocket Reference
Language: en
Pages: 277
Authors: James Densmore
Categories: Computers
Type: BOOK - Published: 2021-02-10 - Publisher: O'Reilly Media

DOWNLOAD EBOOK

Data pipelines are the foundation for success in data analytics. Moving data from numerous diverse sources and transforming it to provide context is the differe