Introductory Lectures on Knot Theory

Introductory Lectures on Knot Theory
Author :
Publisher : World Scientific
Total Pages : 578
Release :
ISBN-10 : 9789814307994
ISBN-13 : 9814307998
Rating : 4/5 (998 Downloads)

Book Synopsis Introductory Lectures on Knot Theory by : Louis H. Kauffman

Download or read book Introductory Lectures on Knot Theory written by Louis H. Kauffman and published by World Scientific. This book was released on 2012 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: More recently, Khovanov introduced link homology as a generalization of the Jones polynomial to homology of chain complexes and Ozsvath and Szabo developed Heegaard-Floer homology, that lifts the Alexander polynomial. These two significantly different theories are closely related and the dependencies are the object of intensive study. These ideas mark the beginning of a new era in knot theory that includes relationships with four-dimensional problems and the creation of new forms of algebraic topology relevant to knot theory. The theory of skein modules is an older development also having its roots in Jones discovery. Another significant and related development is the theory of virtual knots originated independently by Kauffman and by Goussarov Polyak and Viro in the '90s. All these topics and their relationships are the subject of the survey papers in this book.


Introductory Lectures on Knot Theory Related Books

Introductory Lectures on Knot Theory
Language: en
Pages: 578
Authors: Louis H. Kauffman
Categories: Mathematics
Type: BOOK - Published: 2012 - Publisher: World Scientific

DOWNLOAD EBOOK

More recently, Khovanov introduced link homology as a generalization of the Jones polynomial to homology of chain complexes and Ozsvath and Szabo developed Heeg
New Ideas In Low Dimensional Topology
Language: en
Pages: 541
Authors: Vassily Olegovich Manturov
Categories: Mathematics
Type: BOOK - Published: 2015-01-27 - Publisher: World Scientific

DOWNLOAD EBOOK

This book consists of a selection of articles devoted to new ideas and developments in low dimensional topology. Low dimensions refer to dimensions three and fo
Lectures in Knot Theory
Language: en
Pages: 525
Authors: Józef H. Przytycki
Categories:
Type: BOOK - Published: - Publisher: Springer Nature

DOWNLOAD EBOOK

Encyclopedia of Knot Theory
Language: en
Pages: 954
Authors: Colin Adams
Categories: Education
Type: BOOK - Published: 2021-02-10 - Publisher: CRC Press

DOWNLOAD EBOOK

"Knot theory is a fascinating mathematical subject, with multiple links to theoretical physics. This enyclopedia is filled with valuable information on a rich a
An Interactive Introduction to Knot Theory
Language: en
Pages: 193
Authors: Inga Johnson
Categories: Mathematics
Type: BOOK - Published: 2017-01-04 - Publisher: Courier Dover Publications

DOWNLOAD EBOOK

Well-written and engaging, this hands-on approach features many exercises to be completed by readers. Topics include knot definition and equivalence, combinator