Semiconductor Optics 1

Semiconductor Optics 1
Author :
Publisher : Springer Nature
Total Pages : 559
Release :
ISBN-10 : 9783030241520
ISBN-13 : 3030241521
Rating : 4/5 (521 Downloads)

Book Synopsis Semiconductor Optics 1 by : Heinz Kalt

Download or read book Semiconductor Optics 1 written by Heinz Kalt and published by Springer Nature. This book was released on 2019-09-20 with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt: This revised and updated edition of the well-received book by C. Klingshirn provides an introduction to and an overview of all aspects of semiconductor optics, from IR to visible and UV. It has been split into two volumes and rearranged to offer a clearer structure of the course content. Inserts on important experimental techniques as well as sections on topical research have been added to support research-oriented teaching and learning. Volume 1 provides an introduction to the linear optical properties of semiconductors. The mathematical treatment has been kept as elementary as possible to allow an intuitive approach to the understanding of results of semiconductor spectroscopy. Building on the phenomenological model of the Lorentz oscillator, the book describes the interaction of light with fundamental optical excitations in semiconductors (phonons, free carriers, excitons). It also offers a broad review of seminal research results augmented by concise descriptions of the relevant experimental techniques, e.g., Fourier transform IR spectroscopy, ellipsometry, modulation spectroscopy and spatially resolved methods, to name a few. Further, it picks up on hot topics in current research, like quantum structures, mono-layer semiconductors or Perovskites. The experimental aspects of semiconductor optics are complemented by an in-depth discussion of group theory in solid-state optics. Covering subjects ranging from physics to materials science and optoelectronics, this book provides a lively and comprehensive introduction to semiconductor optics. With over 120 problems, more than 480 figures, abstracts to each chapter, as well as boxed inserts and a detailed index, it is intended for use in graduate courses in physics and neighboring sciences like material science and electrical engineering. It is also a valuable reference resource for doctoral and advanced researchers.


Semiconductor Optics 1 Related Books

Semiconductor Optics 1
Language: en
Pages: 559
Authors: Heinz Kalt
Categories: Science
Type: BOOK - Published: 2019-09-20 - Publisher: Springer Nature

DOWNLOAD EBOOK

This revised and updated edition of the well-received book by C. Klingshirn provides an introduction to and an overview of all aspects of semiconductor optics,
Semiconductor Optics and Transport Phenomena
Language: en
Pages: 498
Authors: Wilfried Schäfer
Categories: Science
Type: BOOK - Published: 2013-06-29 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

Well-balanced and up-to-date introduction to the field of semiconductor optics, including transport phenomena in semiconductors. Starting with the theoretical f
Semiconductor Quantum Optics
Language: en
Pages: 658
Authors: Mackillo Kira
Categories: Science
Type: BOOK - Published: 2011-11-17 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

The emerging field of semiconductor quantum optics combines semiconductor physics and quantum optics, with the aim of developing quantum devices with unpreceden
Semiconductor Optics
Language: en
Pages: 817
Authors: Claus F. Klingshirn
Categories: Technology & Engineering
Type: BOOK - Published: 2007-03-07 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

The updated and enlarged new edition of this book provides an introduction to and an overview of semiconductor optics from the IR through the visible to the UV.
Coherent Semiconductor Optics
Language: en
Pages: 322
Authors: Torsten Meier
Categories: Science
Type: BOOK - Published: 2006-10-23 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

This book introduces the basic theoretical concepts required for the analysis of the optical response of semiconductor systems in the coherent regime. It is the