Fractal Geometry, Complex Dimensions and Zeta Functions

Fractal Geometry, Complex Dimensions and Zeta Functions
Author :
Publisher : Springer Science & Business Media
Total Pages : 583
Release :
ISBN-10 : 9781461421764
ISBN-13 : 1461421764
Rating : 4/5 (764 Downloads)

Book Synopsis Fractal Geometry, Complex Dimensions and Zeta Functions by : Michel L. Lapidus

Download or read book Fractal Geometry, Complex Dimensions and Zeta Functions written by Michel L. Lapidus and published by Springer Science & Business Media. This book was released on 2012-09-20 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Key Features of this Second Edition: The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal strings Complex dimensions of a fractal string, defined as the poles of an associated zeta function, are studied in detail, then used to understand the oscillations intrinsic to the corresponding fractal geometries and frequency spectra Explicit formulas are extended to apply to the geometric, spectral, and dynamical zeta functions associated with a fractal Examples of such explicit formulas include a Prime Orbit Theorem with error term for self-similar flows, and a geometric tube formula The method of Diophantine approximation is used to study self-similar strings and flows Analytical and geometric methodsare used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functions Throughout, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition. The significant studies and problems illuminated in this work may be used in a classroom setting at the graduate level. Fractal Geometry, Complex Dimensions and Zeta Functions, Second Edition will appeal to students and researchers in number theory, fractal geometry, dynamical systems, spectral geometry, and mathematical physics.


Fractal Geometry, Complex Dimensions and Zeta Functions Related Books

Fractal Geometry, Complex Dimensions and Zeta Functions
Language: en
Pages: 583
Authors: Michel L. Lapidus
Categories: Mathematics
Type: BOOK - Published: 2012-09-20 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional dru
Zeta Functions in Geometry
Language: en
Pages: 466
Authors: Kurokawa N. (Nobushige)
Categories: Mathematics
Type: BOOK - Published: 1992 - Publisher:

DOWNLOAD EBOOK

This book contains accounts of work presented during the research conference, ``Zeta Functions in Geometry,'' held at the Tokyo Institute of Technology in Augus
Zeta-functions
Language: en
Pages: 256
Authors: Alan David Thomas
Categories: Mathematics
Type: BOOK - Published: 1977 - Publisher: Pitman Publishing

DOWNLOAD EBOOK

Zeta and L-Functions of Varieties and Motives
Language: en
Pages: 217
Authors: Bruno Kahn
Categories: Mathematics
Type: BOOK - Published: 2020-05-07 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

The amount of mathematics invented for number-theoretic reasons is impressive. It includes much of complex analysis, the re-foundation of algebraic geometry on
First European Congress of Mathematics Paris, July 6–10, 1992
Language: en
Pages: 548
Authors: Anthony Joseph
Categories: Mathematics
Type: BOOK - Published: 1994-07 - Publisher: Nelson Thornes

DOWNLOAD EBOOK

Table of Contents: D. Duffie: Martingales, Arbitrage, and Portfolio Choice • J. Fröhlich: Mathematical Aspects of the Quantum Hall Effect • M. Giaquinta: A