Adaptive Traffic Signal Control Using Deep Reinforcement Learning for Network Traffic Incidents

Adaptive Traffic Signal Control Using Deep Reinforcement Learning for Network Traffic Incidents
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : OCLC:1411010634
ISBN-13 :
Rating : 4/5 ( Downloads)

Book Synopsis Adaptive Traffic Signal Control Using Deep Reinforcement Learning for Network Traffic Incidents by : Tianxin Li (M.S. in Engineering)

Download or read book Adaptive Traffic Signal Control Using Deep Reinforcement Learning for Network Traffic Incidents written by Tianxin Li (M.S. in Engineering) and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Traffic signal control is an essential aspect of urban mobility that significantly impacts the efficiency and safety of transportation networks. Traditional traffic signal control systems rely on fixed-time or actuated signal timings, which may not adapt to the dynamic traffic demands and congestion patterns. Therefore, researchers and practitioners have increasingly turned to reinforcement learning (RL) techniques as a promising approach to improve the performance of traffic signal control. This dissertation investigates the application of RL algorithms to traffic signal control, aiming to optimize traffic flow and reduce congestion. The study develops a simulation model of a signalized intersection and trains RL agents to learn how to adjust signal timings based on real-time traffic conditions. The RL agents are designed to learn from experience and adapt to changing traffic patterns, thereby improving the efficiency of traffic flow, even for scenarios in which traffic incidents occur in the network. In this dissertation, the potential benefits of using RL algorithms to optimize traffic signal control in scenarios with and without traffic incidents were explored. To achieve this, an incident generation module was developed using the open-source traffic signal performance simulation framework that relies on the SUMO software. This module includes emergency response vehicles to mimic the realistic impact of traffic incidents and generates incidents randomly in the network. By exposing the RL agent to this environment, it can learn from the experience and optimize traffic signal control to reduce system delay. The study began with a single intersection scenario, where the DQN algorithm was modeled to form the RL agent traffic signal controller. To improve the training process and model performance, experience replay and target network were implemented to solve the limitations of DQN. Hyperparameter tuning was conducted to find the best parameter combination for the training process, and the results showed that DQN outperformed other controllers in terms of the system-wise and intersection-wise queue distribution and vehicle delay. The study was then extended to a small corridor with 2 intersections and a grid network (2x2 intersection), and the incident generation module was used to expose the RL agent to different traffic scenarios. Again, hyperparameter tuning was conducted, and the DQN model outperformed other controllers in terms of reducing congestion and improving the system performance. The robustness of the DQN performance was also tested with different demands, and the microsimulation results showed that the DQN performance was consistent. Overall, this study highlights the potential of RL algorithms to optimize traffic signal control in scenarios with and without traffic incidents. The incident generation module developed in this study provides a realistic environment for the RL agent to learn and adapt, leading to improved system performance and reduced congestion. In addition, hyperparameter tuning is essential to lay down a solid foundation for the RL training process


Adaptive Traffic Signal Control Using Deep Reinforcement Learning for Network Traffic Incidents Related Books

Adaptive Traffic Signal Control Using Deep Reinforcement Learning for Network Traffic Incidents
Language: en
Pages: 0
Authors: Tianxin Li (M.S. in Engineering)
Categories:
Type: BOOK - Published: 2023 - Publisher:

DOWNLOAD EBOOK

Traffic signal control is an essential aspect of urban mobility that significantly impacts the efficiency and safety of transportation networks. Traditional tra
Data-driven Adaptive Traffic Signal Control Via Deep Reinforcement Learning
Language: en
Pages:
Authors: Tian Tan
Categories:
Type: BOOK - Published: 2020 - Publisher:

DOWNLOAD EBOOK

Adaptive traffic signal control (ATSC) system serves a significant role for relieving urban traffic congestion. The system is capable of adjusting signal phases
Applications of Intelligent Systems
Language: en
Pages: 370
Authors: N. Petkov
Categories: Computers
Type: BOOK - Published: 2018-12-21 - Publisher: IOS Press

DOWNLOAD EBOOK

The deployment of intelligent systems to tackle complex processes is now commonplace in many fields from medicine and agriculture to industry and tourism. This
Deep Reinforcement Learning Approach to Multimodal Adaptive Traffic Signal Control
Language: en
Pages: 0
Authors: Soheil Mohamad Alizadeh Shabestary
Categories:
Type: BOOK - Published: 2019 - Publisher:

DOWNLOAD EBOOK

With perpetually increasing demand for transportation as a result of continued urbanization and population growth, it is essential to increase the existing tran
Improving Traffic Safety and Efficiency by Adaptive Signal Control Based on Deep Reinforcement Learning
Language: en
Pages: 126
Authors: Yaobang Gong
Categories:
Type: BOOK - Published: 2020 - Publisher:

DOWNLOAD EBOOK

As one of the most important Active Traffic Management strategies, Adaptive Traffic Signal Control (ATSC) helps improve traffic operation of signalized arterial