Decay of Motion
Author | : Bernd Schmeikal |
Publisher | : Nova Science Publishers |
Total Pages | : 0 |
Release | : 2014 |
ISBN-10 | : 1631178091 |
ISBN-13 | : 9781631178092 |
Rating | : 4/5 (092 Downloads) |
Download or read book Decay of Motion written by Bernd Schmeikal and published by Nova Science Publishers. This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book investigates a discrete theory beyond space and time of QCD-entanglement that creates space-time. Quantum entanglement is known as the most striking property of electrodynamics. It provides both a foundation for quantum information technology and a challenge for theoretical physics. Unfortunately, the equations of motion for entangled systems, quantum jumps and similar phenomena are always conceived as models in space-time. Regardless, whether we consider a quantified local oscillator, a heterodyne detection model, a Bell inequality, a CHSH-inequality, an objective pure state system, or a non-linear steering inequality, it is always formulated in space-time, using the x, σx and so on. This is a doubtable method, since proceeding in this way, we are constructing space-time models of those events that bring about this very space-time, the frames', wherein they are supposed to move. Those who carry out calculations in EPR quantum-steering experiments are acquainted with the Kochen-Specker theorem. But they are still deriving the estimates for expectation values of densities and inequalities from the implicit assumption of states in Hilbert-space. Though some of us have co-operatively managed to close all the major loopholes, the locality loophole, the freedom-of-choice loophole and the detection loophole, none of us has as yet realised that a closure of the locality-loophole in strong qcd-interaction is entirely impossible. A space-like separation of hadronic events cannot be achieved. The reason for our weak models is in the lack of a suitable exact theory of interaction. Such a theory is complete and phenomenologically consistent to some extent. Theoretically, both the iterant algebra of polarised entangled strings as well as the derived geometric algebra of the known space-time is incompatible with complete space-like separation. The loophole opening up on this basis is as large and as old as that universe we pretend to know.