Homological and Homotopical Aspects of Torsion Theories
Author | : Apostolos Beligiannis |
Publisher | : American Mathematical Soc. |
Total Pages | : 224 |
Release | : 2007 |
ISBN-10 | : 9780821839966 |
ISBN-13 | : 0821839969 |
Rating | : 4/5 (969 Downloads) |
Download or read book Homological and Homotopical Aspects of Torsion Theories written by Apostolos Beligiannis and published by American Mathematical Soc.. This book was released on 2007 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper the authors investigate homological and homotopical aspects of a concept of torsion which is general enough to cover torsion and cotorsion pairs in abelian categories, $t$-structures and recollements in triangulated categories, and torsion pairs in stable categories. The proper conceptual framework for this study is the general setting of pretriangulated categories, an omnipresent class of additive categories which includes abelian, triangulated, stable, and moregenerally (homotopy categories of) closed model categories in the sense of Quillen, as special cases. The main focus of their study is on the investigation of the strong connections and the interplay between (co)torsion pairs and tilting theory in abelian, triangulated and stable categories on one hand,and universal cohomology theories induced by torsion pairs on the other hand. These new universal cohomology theories provide a natural generalization of the Tate-Vogel (co)homology theory. The authors also study the connections between torsion theories and closed model structures, which allow them to classify all cotorsion pairs in an abelian category and all torsion pairs in a stable category, in homotopical terms. For instance they obtain a classification of (co)tilting modules along theselines. Finally they give torsion theoretic applications to the structure of Gorenstein and Cohen-Macaulay categories, which provide a natural generalization of Gorenstein and Cohen-Macaulay rings.