IMPLEMENTASI DATA SCIENCE BERBASIS PROYEK DENGAN PYTHON GUI
Author | : Vivian Siahaan |
Publisher | : BALIGE PUBLISHING |
Total Pages | : 163 |
Release | : 2021-08-16 |
ISBN-10 | : |
ISBN-13 | : |
Rating | : 4/5 ( Downloads) |
Download or read book IMPLEMENTASI DATA SCIENCE BERBASIS PROYEK DENGAN PYTHON GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2021-08-16 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “Step by Step Project-Based Tutorials for Data Science with Python GUI: Traffic and Heart Attack Analysis and Prediction”. Anda dapat menemukannya di Google Books dan Amazon. Pada Bab 1, Anda akan mempelajari dasar-dasar pemrograman Python GUI dengan PyQ5. Anda akan belajar menciptakan sejumlah GUI dengan bantuan Qt Designer. Pada proyek di Bab 2, Anda akan belajar menggunakan dan menerapkan modul Scikit-Learn, NumPy, Pandas, dan sejumlah modul lain untuk menganalisa dan memprediksi serangan jantung menggunakan Heart Attack Analysis & Prediction Dataset yang disediakan di Kaggle. Di sini, Anda akan mengembangkan sebuah GUI untuk menampilkan distribusi tiap fitur pada dataset, matriks korelasi, confusion matrix, dan nilai-nilai sebenarnya versus nilai-nilai prediksi. Model-model machine learning yang dipakai pada proyek ini adalah Logistic Regression, K-Nearest Neighbor, Support Vector Machine, Decision Tree, Random Forest, Adaboost, Gradient Boosting, SGBoost, dan MLP. Pada proyek di Bab 3, Anda akan belajar dan menerapkan Scikit-Learn, Scipy, dan sejumlah pustaka lain untuk mengimplementasikan bagaimana menganalisa dan memprediksi trafik kendaraan pada empat persimpangan jalan menggunakan Traffic Prediction Dataset yang disediakan di Kaggle. Dataset memuat 48.1k (48120) observasi banyaknya kendaraan tiap jam di empat persimpangan jalan berbeda. Dataset ini memuat empat kolom: 1) DateTime; 2) Juction; 3) Vehicles; dan 4) ID. Pada proyek ini, Anda akan mengembangkan sebuah GUI untuk menampilkan distribusi kerapatan probabilitas tiap fitur, data pada tiap persimpangan dalam runtun waktu, distribusi banyak kendaraan berdasarkan waktu (tahun, bulan, dan hari) dan persimpangan, matriks korelasi, korelasi-diri parsial, hasil pelatihan model-model Random Forest, keutamaan fitur, dan banyak kendaraan berdasarkan hari untuk beberapa bulan ke depan.