Introduction to the Perturbation Theory of Hamiltonian Systems

Introduction to the Perturbation Theory of Hamiltonian Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 221
Release :
ISBN-10 : 9783642030284
ISBN-13 : 3642030289
Rating : 4/5 (289 Downloads)

Book Synopsis Introduction to the Perturbation Theory of Hamiltonian Systems by : Dmitry Treschev

Download or read book Introduction to the Perturbation Theory of Hamiltonian Systems written by Dmitry Treschev and published by Springer Science & Business Media. This book was released on 2009-10-08 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an extended version of lectures given by the ?rst author in 1995–1996 at the Department of Mechanics and Mathematics of Moscow State University. We believe that a major part of the book can be regarded as an additional material to the standard course of Hamiltonian mechanics. In comparison with the original Russian 1 version we have included new material, simpli?ed some proofs and corrected m- prints. Hamiltonian equations ?rst appeared in connection with problems of geometric optics and celestial mechanics. Later it became clear that these equations describe a large classof systemsin classical mechanics,physics,chemistry,and otherdomains. Hamiltonian systems and their discrete analogs play a basic role in such problems as rigid body dynamics, geodesics on Riemann surfaces, quasi-classic approximation in quantum mechanics, cosmological models, dynamics of particles in an accel- ator, billiards and other systems with elastic re?ections, many in?nite-dimensional models in mathematical physics, etc. In this book we study Hamiltonian systems assuming that they depend on some parameter (usually?), where for?= 0 the dynamics is in a sense simple (as a rule, integrable). Frequently such a parameter appears naturally. For example, in celestial mechanics it is accepted to take? equal to the ratio: the mass of Jupiter over the mass of the Sun. In other cases it is possible to introduce the small parameter ar- ?cially.


Introduction to the Perturbation Theory of Hamiltonian Systems Related Books

Introduction to the Perturbation Theory of Hamiltonian Systems
Language: en
Pages: 221
Authors: Dmitry Treschev
Categories: Mathematics
Type: BOOK - Published: 2009-10-08 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

This book is an extended version of lectures given by the ?rst author in 1995–1996 at the Department of Mechanics and Mathematics of Moscow State University.
Introduction to Hamiltonian Dynamical Systems and the N-Body Problem
Language: en
Pages: 389
Authors: Kenneth R. Meyer
Categories: Mathematics
Type: BOOK - Published: 2017-05-04 - Publisher: Springer

DOWNLOAD EBOOK

This third edition text provides expanded material on the restricted three body problem and celestial mechanics. With each chapter containing new content, reade
Introduction to the Perturbation Theory of Hamiltonian Systems
Language: en
Pages: 211
Authors: Dmitry Treschev
Categories: Mathematics
Type: BOOK - Published: 2010-04-29 - Publisher: Springer

DOWNLOAD EBOOK

This book is an extended version of lectures given by the ?rst author in 1995–1996 at the Department of Mechanics and Mathematics of Moscow State University.
Construction of Mappings for Hamiltonian Systems and Their Applications
Language: en
Pages: 384
Authors: Sadrilla S. Abdullaev
Categories: Science
Type: BOOK - Published: 2006-08-02 - Publisher: Springer

DOWNLOAD EBOOK

Based on the method of canonical transformation of variables and the classical perturbation theory, this innovative book treats the systematic theory of symplec
Notes on Hamiltonian Dynamical Systems Notes on Hamiltonian Dynamical Systems
Language: en
Pages: 474
Authors: Antonio Giorgilli
Categories: Science
Type: BOOK - Published: 2022-05-05 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

Starting with the basics of Hamiltonian dynamics and canonical transformations, this text follows the historical development of the theory culminating in recent