Machine Learning for Time-Series with Python

Machine Learning for Time-Series with Python
Author :
Publisher : Packt Publishing
Total Pages : 370
Release :
ISBN-10 : 1801819629
ISBN-13 : 9781801819626
Rating : 4/5 (626 Downloads)

Book Synopsis Machine Learning for Time-Series with Python by : Ben Auffarth

Download or read book Machine Learning for Time-Series with Python written by Ben Auffarth and published by Packt Publishing. This book was released on 2021-10-29 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Become proficient in deriving insights from time-series data and analyzing a model's performance Key Features: Explore popular and modern machine learning methods including the latest online and deep learning algorithms Learn to increase the accuracy of your predictions by matching the right model with the right problem Master time-series via real-world case studies on operations management, digital marketing, finance, and healthcare Book Description: Machine learning has emerged as a powerful tool to understand hidden complexities in time-series datasets, which frequently need to be analyzed in areas as diverse as healthcare, economics, digital marketing, and social sciences. These datasets are essential for forecasting and predicting outcomes or for detecting anomalies to support informed decision making. This book covers Python basics for time-series and builds your understanding of traditional autoregressive models as well as modern non-parametric models. You will become confident with loading time-series datasets from any source, deep learning models like recurrent neural networks and causal convolutional network models, and gradient boosting with feature engineering. Machine Learning for Time-Series with Python explains the theory behind several useful models and guides you in matching the right model to the right problem. The book also includes real-world case studies covering weather, traffic, biking, and stock market data. By the end of this book, you will be proficient in effectively analyzing time-series datasets with machine learning principles. What You Will Learn: Understand the main classes of time-series and learn how to detect outliers and patterns Choose the right method to solve time-series problems Characterize seasonal and correlation patterns through autocorrelation and statistical techniques Get to grips with time-series data visualization Understand classical time-series models like ARMA and ARIMA Implement deep learning models like Gaussian processes and transformers and state-of-the-art machine learning models Become familiar with many libraries like prophet, xgboost, and TensorFlow Who this book is for: This book is ideal for data analysts, data scientists, and Python developers who are looking to perform time-series analysis to effectively predict outcomes. Basic knowledge of the Python language is essential. Familiarity with statistics is desirable.


Machine Learning for Time-Series with Python Related Books

Machine Learning for Time-Series with Python
Language: en
Pages: 370
Authors: Ben Auffarth
Categories:
Type: BOOK - Published: 2021-10-29 - Publisher: Packt Publishing

DOWNLOAD EBOOK

Become proficient in deriving insights from time-series data and analyzing a model's performance Key Features: Explore popular and modern machine learning metho
Machine Learning for Time Series Forecasting with Python
Language: en
Pages: 227
Authors: Francesca Lazzeri
Categories: Computers
Type: BOOK - Published: 2020-12-01 - Publisher: John Wiley & Sons

DOWNLOAD EBOOK

Learn how to apply the principles of machine learning to time series modeling with this indispensable resource Machine Learning for Time Series Forecasting with
Time Series Forecasting in Python
Language: en
Pages: 454
Authors: Marco Peixeiro
Categories: Computers
Type: BOOK - Published: 2022-10-04 - Publisher: Simon and Schuster

DOWNLOAD EBOOK

Build predictive models from time-based patterns in your data. Master statistical models including new deep learning approaches for time series forecasting. In
Hands-on Time Series Analysis with Python
Language: en
Pages: 407
Authors: B V Vishwas
Categories: Computers
Type: BOOK - Published: 2020-08-25 - Publisher: Apress

DOWNLOAD EBOOK

Learn the concepts of time series from traditional to bleeding-edge techniques. This book uses comprehensive examples to clearly illustrate statistical approach
Forecasting: principles and practice
Language: en
Pages: 380
Authors: Rob J Hyndman
Categories: Business & Economics
Type: BOOK - Published: 2018-05-08 - Publisher: OTexts

DOWNLOAD EBOOK

Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic