Mastering Machine Learning with scikit-learn

Mastering Machine Learning with scikit-learn
Author :
Publisher : Packt Publishing Ltd
Total Pages : 249
Release :
ISBN-10 : 9781788298490
ISBN-13 : 1788298497
Rating : 4/5 (497 Downloads)

Book Synopsis Mastering Machine Learning with scikit-learn by : Gavin Hackeling

Download or read book Mastering Machine Learning with scikit-learn written by Gavin Hackeling and published by Packt Publishing Ltd. This book was released on 2017-07-24 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Use scikit-learn to apply machine learning to real-world problems About This Book Master popular machine learning models including k-nearest neighbors, random forests, logistic regression, k-means, naive Bayes, and artificial neural networks Learn how to build and evaluate performance of efficient models using scikit-learn Practical guide to master your basics and learn from real life applications of machine learning Who This Book Is For This book is intended for software engineers who want to understand how common machine learning algorithms work and develop an intuition for how to use them, and for data scientists who want to learn about the scikit-learn API. Familiarity with machine learning fundamentals and Python are helpful, but not required. What You Will Learn Review fundamental concepts such as bias and variance Extract features from categorical variables, text, and images Predict the values of continuous variables using linear regression and K Nearest Neighbors Classify documents and images using logistic regression and support vector machines Create ensembles of estimators using bagging and boosting techniques Discover hidden structures in data using K-Means clustering Evaluate the performance of machine learning systems in common tasks In Detail Machine learning is the buzzword bringing computer science and statistics together to build smart and efficient models. Using powerful algorithms and techniques offered by machine learning you can automate any analytical model. This book examines a variety of machine learning models including popular machine learning algorithms such as k-nearest neighbors, logistic regression, naive Bayes, k-means, decision trees, and artificial neural networks. It discusses data preprocessing, hyperparameter optimization, and ensemble methods. You will build systems that classify documents, recognize images, detect ads, and more. You will learn to use scikit-learn's API to extract features from categorical variables, text and images; evaluate model performance, and develop an intuition for how to improve your model's performance. By the end of this book, you will master all required concepts of scikit-learn to build efficient models at work to carry out advanced tasks with the practical approach. Style and approach This book is motivated by the belief that you do not understand something until you can describe it simply. Work through toy problems to develop your understanding of the learning algorithms and models, then apply your learnings to real-life problems.


Mastering Machine Learning with scikit-learn Related Books

Mastering Machine Learning with scikit-learn
Language: en
Pages: 249
Authors: Gavin Hackeling
Categories: Computers
Type: BOOK - Published: 2017-07-24 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

Use scikit-learn to apply machine learning to real-world problems About This Book Master popular machine learning models including k-nearest neighbors, random f
Mastering Machine Learning with Scikit-Learn, Second Edition
Language: en
Pages: 254
Authors: Gavin Hackeling
Categories: Computers
Type: BOOK - Published: 2017-07-27 - Publisher:

DOWNLOAD EBOOK

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits
Language: en
Pages: 368
Authors: Tarek Amr
Categories: Mathematics
Type: BOOK - Published: 2020-07-24 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

Integrate scikit-learn with various tools such as NumPy, pandas, imbalanced-learn, and scikit-surprise and use it to solve real-world machine learning problems
Machine Learning with PyTorch and Scikit-Learn
Language: en
Pages: 775
Authors: Sebastian Raschka
Categories: Computers
Type: BOOK - Published: 2022-02-25 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

This book of the bestselling and widely acclaimed Python Machine Learning series is a comprehensive guide to machine and deep learning using PyTorch s simple to
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
Language: en
Pages: 830
Authors: Aurélien Géron
Categories: Computers
Type: BOOK - Published: 2019-09-05 - Publisher: "O'Reilly Media, Inc."

DOWNLOAD EBOOK

Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about