Oligomerization and Polymerization of Ethylene by Phenoxy-imine Titanium Catalysts

Oligomerization and Polymerization of Ethylene by Phenoxy-imine Titanium Catalysts
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : OCLC:1155340922
ISBN-13 :
Rating : 4/5 ( Downloads)

Book Synopsis Oligomerization and Polymerization of Ethylene by Phenoxy-imine Titanium Catalysts by : Astrid Cordier

Download or read book Oligomerization and Polymerization of Ethylene by Phenoxy-imine Titanium Catalysts written by Astrid Cordier and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1-hexene is one of the most important olefin used as comonomer for the production of value-added polyethylenes (HDPE, LLDPE). In the field of selective ethylene trimerization employing titanium-based catalysts, specific single tridentate phenoxy-imine complexes (SFI) display the highest activity and 1-hexene selectivity upon activation with methylaluminoxane (MAO). However, ethylene polymerization is an unavoidable side reaction affecting both 1-hexene selectivity and process operations. Although being a major drawback, the causes of polymerization remain a grey area since few studies were dedicated to its deciphering. To handle this challenge , an original “polymer-to-catalyst” strategy was implemented. An extensive temperature study (26-80°C) revealed that the highest 1-hexene activity is reached between 30 °C and 40 °C while polymer production is prominent above 50 °C. Polyethylenes obtained were analyzed by SEC, NMR DSC, and advanced segregation techniques (CEF, SIST, rheology). Molar masses above 10^5 g mol-1 were identified along with a 1-hexene content below 1 mol %. An increase of dispersity (Ɖ > 2) with temperature was ascribed to an evolution from single to multi-site polymerization catalysis. Kinetic studies proved that polymer is continuously produced even at short reaction time, for any reaction temperature. Other parameters (addition of 1-hexene, hydrogen and use of trimethylaluminum) were found to impair the trimerization selectivity and/or activity of the system. Nevertheless, it was possible to lower the selectivity in polyethylene by premixing the complex with MAO. After analyzing the possible routes for the polymerization catalyst formation, the hypotheses of temperature and MAO-induced complex alterations were considered. Regarding the latter, a molecular ligand-free Ziegler-Natta catalyst, modeled using TiCl4/MAO, and the synthesized (FI)Ti(III)Cl2 activated by MAO could not explain polymer production in the SFI system. Formation of a polymerization species upon thermal alteration of the SFI complex was evidenced. This [O-,N,O-]-type species displays common features regarding catalytic response to 1-hexene compared to the polymerization catalyst in the SFI system although it could not reach the same catalytic performances. The formation of a bis(phenoxy-imine) complex (FI)2TiCl2 was evidenced in this thesis and is a promising avenue worth exploring. Eventually, although the exact species has not yet been identified, this work enabled to guide the focus of further investigations on activation process and complex rearrangement by ligand mobility.


Oligomerization and Polymerization of Ethylene by Phenoxy-imine Titanium Catalysts Related Books