Self-Service Data Analytics and Governance for Managers
Author | : Nathan E. Myers |
Publisher | : John Wiley & Sons |
Total Pages | : 355 |
Release | : 2021-06-02 |
ISBN-10 | : 9781119773290 |
ISBN-13 | : 1119773296 |
Rating | : 4/5 (296 Downloads) |
Download or read book Self-Service Data Analytics and Governance for Managers written by Nathan E. Myers and published by John Wiley & Sons. This book was released on 2021-06-02 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: Project governance, investment governance, and risk governance precepts are woven together in Self-Service Data Analytics and Governance for Managers, equipping managers to structure the inevitable chaos that can result as end-users take matters into their own hands Motivated by the promise of control and efficiency benefits, the widespread adoption of data analytics tools has created a new fast-moving environment of digital transformation in the finance, accounting, and operations world, where entire functions spend their days processing in spreadsheets. With the decentralization of application development as users perform their own analysis on data sets and automate spreadsheet processing without the involvement of IT, governance must be revisited to maintain process control in the new environment. In this book, emergent technologies that have given rise to data analytics and which form the evolving backdrop for digital transformation are introduced and explained, and prominent data analytics tools and capabilities will be demonstrated based on real world scenarios. The authors will provide a much-needed process discovery methodology describing how to survey the processing landscape to identify opportunities to deploy these capabilities. Perhaps most importantly, the authors will digest the mature existing data governance, IT governance, and model governance frameworks, but demonstrate that they do not comprehensively cover the full suite of data analytics builds, leaving a considerable governance gap. This book is meant to fill the gap and provide the reader with a fit-for-purpose and actionable governance framework to protect the value created by analytics deployment at scale. Project governance, investment governance, and risk governance precepts will be woven together to equip managers to structure the inevitable chaos that can result as end-users take matters into their own hands.