STEP BY STEP PROJECT-BASED TUTORIALS DATA SCIENCE WITH PYTHON GUI: TRAFFIC AND HEART ATTACK ANALYSIS AND PREDICTION
Author | : Vivian Siahaan |
Publisher | : BALIGE PUBLISHING |
Total Pages | : 179 |
Release | : 2023-06-21 |
ISBN-10 | : |
ISBN-13 | : |
Rating | : 4/5 ( Downloads) |
Download or read book STEP BY STEP PROJECT-BASED TUTORIALS DATA SCIENCE WITH PYTHON GUI: TRAFFIC AND HEART ATTACK ANALYSIS AND PREDICTION written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2023-06-21 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, you will implement two data science projects using Scikit-Learn, Scipy, and other libraries with Python GUI. In chapter 1, you will learn how to use Scikit-Learn, Scipy, and other libraries to perform how to predict traffic (number of vehicles) in four different junctions using Traffic Prediction Dataset (https://viviansiahaan.blogspot.com/2023/06/step-by-step-project-based-tutorials.html). This dataset contains 48.1k (48120) observations of the number of vehicles each hour in four different junctions: 1) DateTime; 2) Juction; 3) Vehicles; and 4) ID. Here's the outline of the steps involved in predicting traffic: Dataset Preparation: Extract the dataset files to a local folder. Import the necessary libraries, such as pandas and numpy. Load the dataset into a pandas DataFrame. Exploratory Data Analysis (EDA). Explore the dataset to understand its structure and characteristics. Check for missing values or anomalies in the data. Examine the distribution of the target variable (number of vehicles). Visualize the data using plots or graphs to gain insights into the patterns and trends.; Data Preprocessing: Convert the DateTime column to a datetime data type for easier manipulation. Extract additional features from the DateTime column, such as hour, day of the week, month, etc., which might be relevant for traffic prediction. Encode categorical variables, such as Junction, using one-hot encoding or label encoding. Split the dataset into training and testing sets for model evaluation.; Feature Selection/Engineering: Perform feature selection techniques, such as correlation analysis or feature importance, to identify the most relevant features for traffic prediction. Engineer new features that might capture underlying patterns or relationships in the data, such as lagged variables or rolling averages.; Model Selection and Training: Choose an appropriate machine learning model for traffic prediction, such as linear regression, decision trees, random forests, or gradient boosting. Split the data into input features (X) and target variable (y). Split the data further into training and testing sets. Fit the chosen model to the training data. Evaluate the model's performance using appropriate evaluation metrics (e.g., mean squared error, R-squared). Model Evaluation and Hyperparameter Tuning. Assess the model's performance on the testing set. Tune the hyperparameters of the chosen model to improve its performance. Use techniques like grid search or randomized search to find the optimal hyperparameters.; Model Deployment and Prediction: Once satisfied with the model's performance, retrain it on the entire dataset (including the testing set). Save the trained model for future use. Utilize the model to make predictions on new, unseen data for traffic prediction. In chapter 2, you will learn how to use Scikit-Learn, NumPy, Pandas, and other libraries to perform how to analyze and predict heart attack using Heart Attack Analysis & Prediction Dataset (https://viviansiahaan.blogspot.com/2023/06/step-by-step-project-based-tutorials.html). Following are the outline steps for analyzing and predicting heart attacks using the Heart Attack Analysis & Prediction Dataset. Introduction and Dataset Description: Provide an introduction to the topic of heart attack analysis and prediction. Briefly explain the dataset's source and its features, such as age, sex, blood pressure, cholesterol levels, etc.; Data Loading: Explain how to load the Heart Attack Analysis & Prediction Dataset into your Python environment using libraries like Pandas. You can mention that the dataset should be in a CSV format and demonstrate how to load it.; Data Exploration: Describe the importance of exploring the dataset before analysis. Show how to examine the dataset's structure, check for missing values, understand the statistical summary, and visualize the data using plots or charts.; Data Preprocessing: Explain the steps required to preprocess the dataset before feeding it into a machine learning model. This may include handling missing values, encoding categorical variables, scaling numerical features, and dealing with any other necessary data transformations.; Data Splitting: Describe how to split the preprocessed data into training and testing sets. Emphasize the importance of having separate data for training and evaluation to assess the model's performance accurately.; Model Building and Training: Explain how to choose an appropriate machine learning algorithm for heart attack prediction and how to build a model using libraries like Scikit-Learn. Outline the steps involved in training the model on the training dataset.; Model Evaluation: Describe how to evaluate the trained model's performance using appropriate evaluation metrics, such as accuracy, precision, recall, and F1 score. Demonstrate how to interpret the evaluation results and assess the model's predictive capabilities.; Predictions on New Data: Explain how to use the trained model to make predictions on new, unseen data. Demonstrate the process of feeding new data to the model and obtaining predictions for heart attack risk.