Quaternionic Structures in Mathematics and Physics
Author | : Stefano Marchiafava |
Publisher | : World Scientific |
Total Pages | : 486 |
Release | : 2001 |
ISBN-10 | : 9789812810038 |
ISBN-13 | : 981281003X |
Rating | : 4/5 (03X Downloads) |
Download or read book Quaternionic Structures in Mathematics and Physics written by Stefano Marchiafava and published by World Scientific. This book was released on 2001 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last five years, after the first meeting on OC Quaternionic Structures in Mathematics and PhysicsOCO, interest in quaternionic geometry and its applications has continued to increase. Progress has been made in constructing new classes of manifolds with quaternionic structures (quaternionic Knhler, hyper-Knhler, hyper-complex, etc.), studying the differential geometry of special classes of such manifolds and their submanifolds, understanding relations between the quaternionic structure and other differential-geometric structures, and also in physical applications of quaternionic geometry. Some generalizations of classical quaternion-like structures (like HKT structures and hyper-Knhler manifolds with singularities) appeared naturally and were studied. Some of those results are published in this book. Contents: Hypercomplex Structures on Special Classes of Nilpotent and Solvable Lie Groups (M L Barberis); Twistor Quotients of HyperKnhler Manifolds (R Bielawski); Quaternionic Contact Structures (O Biquard); A New Construction of Homogeneous Quaternionic Manifolds and Related Geometric Structures (V Cortes); Quaternion Knhler Flat Manifolds (I G Dotti); A Canonical HyperKnhler Metric on the Total Space of a Cotangent Bundle (D Kaledin); Special Spinors and Contact Geometry (A Moroianu); Brane Solitons and Hypercomplex Structures (G Papadopoulos); Hypercomplex Geometry (H Pedersen); Examples of HyperKnhler Connections with Torsion (Y S Poon); A New Weight System on Chord Diagrams via HyperKnhler Geometry (J Sawon); Vanishing Theorems for Quaternionic Knhler Manifolds (U Semmelmann & G Weingart); Weakening Holonomy (A Swann); Special Knhler Geometry (A Van Proeyen); Singularities in HyperKnhler Geometry (M Verbitsky); and other papers. Readership: Researchers and graduate students in geometry, topology, mathematical physics and theoretical physics."